Search results
Results From The WOW.Com Content Network
London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are ...
The London–van der Waals forces are related to the Casimir effect for dielectric media, the former being the microscopic description of the latter bulk property. The first detailed calculations of this were done in 1955 by E. M. Lifshitz. [15] [16] A more general theory of van der Waals forces has also been developed. [17] [18]
Van der Waals forces – Keesom force, Debye force, and London dispersion force; Cation–cation bonding; Salt bridge (protein and supramolecular) Information on intermolecular forces is obtained by macroscopic measurements of properties like viscosity, pressure, volume, temperature (PVT) data.
Purple balls represent iodine atoms. (b) Demonstration of how van der Waals and London dispersion forces guide the organization of the crystal lattice from 1D to 3D (bulk material). Argon, is a noble gas that has a full octet, no charge, and is nonpolar.
Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2] Non-covalent interactions [4] are critical in maintaining the three-dimensional structure of large molecules, such as proteins and nucleic acids.
The London dispersion force is a component of the van der Waals force, which is itself a sum of many forces. We note in the former article that "dispersion forces are usually dominant of the three van der Waals forces", with the other two being orientation and induction forces.
The Van der Waals forces are effective only up to several hundred angstroms. When the interactions are too far apart, the dispersion potential decays faster than 1 / r 6 ; {\displaystyle 1/r^{6};} this is called the retarded regime, and the result is a Casimir–Polder force .
For atoms and nonpolar molecules, the London dispersion force is the only intermolecular force, and is responsible for their existence in liquid and solid states. For polar molecules, this force is one part of the van der Waals force, along with forces between the permanent molecular dipole moments.