Ad
related to: sin cos tan chart printable version info free
Search results
Results From The WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
A trigonometry table is essentially a reference chart that presents the values of sine, cosine, tangent, and other trigonometric functions for various angles. These angles are usually arranged across the top row of the table, while the different trigonometric functions are labeled in the first column on the left.
In mathematics, the values of the trigonometric functions can be expressed approximately, as in (/), or exactly, as in (/) = /.While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts
Printable version; Page information; ... the terms of the GNU Free Documentation License, Version 1.2 or any later ... plot sin(x) lw 4, cos(x) lw 4, tan(x) 1w 4 ...
The first tables of trigonometric functions known to be made were by Hipparchus (c.190 – c.120 BCE) and Menelaus (c.70–140 CE), but both have been lost. Along with the surviving table of Ptolemy (c. 90 – c.168 CE), they were all tables of chords and not of half-chords, that is, the sine function. [1]
Āryabhaṭa's sine table; Bhaskara I's sine approximation formula; Madhava's sine table; Ptolemy's table of chords, written in the second century A.D. Rule of marteloio; Canon Sinuum, listing sines at increments of two arcseconds, published in the late 1500s
The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [32] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33]