Search results
Results From The WOW.Com Content Network
It can be obtained from cyclohexanone by α-bromination followed by treatment with base. Hydrolysis of 3-chloro cyclohexene followed by oxidation of the cyclohexenol is yet another route. Cyclohexenone is produced industrially by catalytic oxidation of cyclohexene, for example with hydrogen peroxide and vanadium catalysts.
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The reaction has been described in the literature [3] as proceeding in a manner similar to the Fischer indole synthesis. Here, the acid-catalyzed proton transfer first converts the cyclohexanone phenylhydrazone 1 to the intermediate 2. Subsequently, a heat-induced sigmatropic reaction occurs to produce 3, which is protonated and cyclizes into 4.
Nucleophilic conjugate addition is a type of organic reaction. Ordinary nucleophilic additions or 1,2-nucleophilic additions deal mostly with additions to carbonyl compounds. Simple alkene compounds do not show 1,2 reactivity due to lack of polarity, unless the alkene is activated with special substituents.
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid, used to make nylon. The small cycloalkanes – in particular, cyclopropane – have a lower stability due to Baeyer strain and ring strain.
The synthetic procedure [16] is typical for this type of reaction. In the process, in addition to water, an equivalent of ethanol and carbon dioxide are lost in decarboxylation. Ethyl glyoxylate 2 and glutaconate (diethyl-2-methylpent-2-enedioate) 1 react to isoprenetricarboxylic acid 3 (isoprene (2-methylbuta-1,3-diene) skeleton) with sodium ...
Reductions with hydrosilanes are methods used for hydrogenation and hydrogenolysis of organic compounds.The approach is a subset of ionic hydrogenation.In this particular method, the substrate is treated with a hydrosilane and auxiliary reagent, often a strong acid, resulting in formal transfer of hydride from silicon to carbon. [1]