When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orders of magnitude (charge) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(charge)

    (2/3 e)—Charge of up, charm and top quarks [2] 1.602 × 10 −19 C: The elementary charge e, i.e. the negative charge on a single electron or the positive charge on a single proton [3] 10 −18: atto-(aC) ~ 1.8755 × 10 −18 C: Planck charge [4] [5] 10 −17: 1.473 × 10 −17 C (92 e) – Positive charge on a uranium nucleus (derived: 92 x ...

  3. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles , e.g. in electron optics and ion optics .

  4. Coulomb gas - Wikipedia

    en.wikipedia.org/wiki/Coulomb_gas

    The two-dimensional Coulomb gas is known to be equivalent to the continuum XY model of magnets and the sine-Gordon model (upon taking certain limits) in a physical sense, in that physical observables (correlation functions) calculated in one model can be used to calculate physical observables in another model.

  5. Coulomb - Wikipedia

    en.wikipedia.org/wiki/Coulomb

    The coulomb was originally defined, using the latter definition of the ampere, as 1 A × 1 s. [4] The 2019 redefinition of the ampere and other SI base units fixed the numerical value of the elementary charge when expressed in coulombs and therefore fixed the value of the coulomb when expressed as a multiple of the fundamental charge.

  6. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  7. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    R is the universal ideal gas constant: R = 8.314 462 618 153 24 J K −1 mol −1, T is the temperature in kelvins, z is the number of electrons transferred in the cell reaction or half-reaction, F is the Faraday constant, the magnitude of charge (in coulombs) per mole of electrons: F = 96 485.332 123 310 0184 C mol −1,

  8. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  9. Charge density - Wikipedia

    en.wikipedia.org/wiki/Charge_density

    In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m −3), at any point in a volume.