Search results
Results From The WOW.Com Content Network
Independence of irrelevant alternatives (IIA) is an axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions.
Unrestricted domain is one of the conditions for Arrow's impossibility theorem. Under that theorem, it is impossible to have a social choice function that satisfies unrestricted domain, Pareto efficiency, independence of irrelevant alternatives, and non-dictatorship. However, the conditions of the theorem can be satisfied if unrestricted domain ...
Arrow's theorem assumes as background that any non-degenerate social choice rule will satisfy: [15]. Unrestricted domain — the social choice function is a total function over the domain of all possible orderings of outcomes, not just a partial function.
The opposite direction was already known, thus the theorem and axiom of choice are equivalent. Tarski told Jan Mycielski that when he tried to publish the theorem in Comptes Rendus de l'Académie des Sciences de Paris, Fréchet and Lebesgue refused to present it. Fréchet wrote that an implication between two well known propositions is not a ...
Tarski's theorem about choice: For every infinite set A, there is a bijective map between the sets A and A×A. Trichotomy: If two sets are given, then either they have the same cardinality, or one has a smaller cardinality than the other. Given two non-empty sets, one has a surjection to the other. Every surjective function has a right inverse.
Theorem: Any matching law selection rule satisfies Luce's choice axiom. Conversely, if P ( a ∣ A ) > 0 {\displaystyle P(a\mid A)>0} for all a ∈ A ⊂ X {\displaystyle a\in A\subset X} , then Luce's choice axiom implies that it is a matching law selection rule.
The revelation principle is a fundamental result in mechanism design, social choice theory, and game theory which shows it is always possible to design a strategy-resistant implementation of a social decision-making mechanism (such as an electoral system or market). [1] It can be seen as a kind of mirror image to Gibbard's theorem.
In this repeated game, a strategy for one of the players is a deterministic rule that specifies the player's choice in each iteration of the stage game, based on all other player's choices in the prior iterations. A choice of strategy for each of the players is a strategy profile, and it leads to a payout profile for the repeated game. There ...