When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  3. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    It leads to another proof that there are infinitely many primes: if there were only finitely many, then the sum-product equality would also be valid at ⁠ = ⁠, but the sum would diverge (it is the harmonic series ⁠ + + + … ⁠) while the product would be finite, a contradiction.

  5. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    This property is the key in the proof of the fundamental theorem of arithmetic. [note 2] It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains.

  6. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    Both the Furstenberg and Golomb topologies furnish a proof that there are infinitely many prime numbers. [1] [2] A sketch of the proof runs as follows: Fix a prime p and note that the (positive, in the Golomb space case) integers are a union of finitely many residue classes modulo p. Each residue class is an arithmetic progression, and thus clopen.

  7. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Some infinite sets truly have more elements than others in a deep mathematical way, and Cantor proved it. There is the first infinite size, the smallest infinity, which gets denoted ℵ₀. That ...

  8. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    In the first half of the twentieth century, some mathematicians (notably G. H. Hardy) believed that there exists a hierarchy of proof methods in mathematics depending on what sorts of numbers (integers, reals, complex) a proof requires, and that the prime number theorem (PNT) is a "deep" theorem by virtue of requiring complex analysis. [9]

  9. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Applications of the harmonic series and its partial sums include Euler's proof that there are infinitely many prime numbers, the analysis of the coupon collector's problem on how many random trials are needed to provide a complete range of responses, the connected components of random graphs, the block-stacking problem on how far over the edge ...