When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    He also assumed that K(χ) had a maximum value when χ = 0, and was equal to zero when χ = π/2, where χ is the angle between the normal of the primary wavefront and the normal of the secondary wavefront. The complex amplitude at P, due to the contribution of secondary waves, is then given by: [14]

  3. Huygens principle of double refraction - Wikipedia

    en.wikipedia.org/wiki/Huygens_principle_of...

    [3] [4] According to the Huygens–Fresnel principle, each point on a wavefront can be considered a secondary point source of waves, so a new wavefront is formed after the secondary wavelets have traveled for a period equal to one vibration cycle. This new wavefront can be described as an envelope or tangent surface to these secondary wavelets. [5]

  4. Wavefront - Wikipedia

    en.wikipedia.org/wiki/Wavefront

    The light from this type of wave is referred to as collimated light. The plane wavefront is a good model for a surface-section of a very large spherical wavefront; for instance, sunlight strikes the earth with a spherical wavefront that has a radius of about 150 million kilometers (1 AU). For many purposes, such a wavefront can be considered ...

  5. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    The wave displacement at any subsequent point is the sum of these secondary waves. When waves are added together, their sum is determined by the relative phases as well as the amplitudes of the individual waves so that the summed amplitude of the waves can have any value between zero and the sum of the individual amplitudes. Hence, diffraction ...

  6. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    These effects can be modelled using the Huygens–Fresnel principle; Huygens postulated that every point on a wavefront acts as a source of spherical secondary wavelets and the sum of these secondary wavelets determines the form of the proceeding wave at any subsequent time, while Fresnel developed an equation using the Huygens wavelets ...

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium.

  8. Fermat's principle - Wikipedia

    en.wikipedia.org/wiki/Fermat's_principle

    As a "new consideration" (pp. 310–11), he notes that if a plane wavefront is passed through a small hole centered on point E, then the direction ED of maximum intensity of the resulting beam will be that in which the secondary wave starting from E will "arrive there the first", and the secondary wavefronts from opposite sides of the hole ...

  9. S wave - Wikipedia

    en.wikipedia.org/wiki/S_wave

    Unlike P waves, S waves cannot travel through the molten outer core of the Earth, and this causes a shadow zone for S waves opposite to their origin. They can still propagate through the solid inner core: when a P wave strikes the boundary of molten and solid cores at an oblique angle, S waves will form and propagate in the solid medium. When ...