Search results
Results From The WOW.Com Content Network
The electron transport chain comprises an enzymatic series of electron donors and acceptors. Each electron donor will pass electrons to an acceptor of higher redox potential, which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, the terminal electron acceptor in ...
The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred to respectively as the electron acceptor and electron donor. In some cases, the degree of charge transfer is "complete", such that the CT complex can be ...
Proper names of oxidoreductases are formed as "donor:acceptor oxidoreductase"; however, other names are much more common. [ citation needed ] The common name is " donor dehydrogenase " when possible, such as glyceraldehyde-3-phosphate dehydrogenase for the second reaction above.
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
The electron donating power of a donor molecule is measured by its ionization potential, which is the energy required to remove an electron from the highest occupied molecular orbital . The overall energy balance (ΔE), i.e., energy gained or lost, in an electron donor-acceptor transfer is determined by the difference between the acceptor's ...
The two modified chlorophyll molecules are early electron acceptors in PSI. They are present one per PsaA/PsaB side, forming two branches electrons can take to reach F x. A 0 accepts electrons from P700*, passes it to A 1 of the same side, which then passes the electron to the quinone on the same side. Different species seems to have different ...
In chemolithotrophs, the compounds – the electron donors – are oxidized in the cell, and the electrons are channeled into respiratory chains, ultimately producing ATP. The electron acceptor can be oxygen (in aerobic bacteria), but a variety of other electron acceptors, organic and inorganic, are also used by various species.
An example of this phenomenon occurred during the Great Oxidation Event, in which biologically−produced molecular oxygen (dioxygen (O 2), an oxidizer and electron recipient) was added to the early Earth's atmosphere, which was originally a weakly reducing atmosphere containing reducing gases like methane (CH 4) and carbon monoxide (CO) (along ...