Search results
Results From The WOW.Com Content Network
The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero. [3] [5] [6] Another common circle diagram form is as described in the two constant air-gap induction motor ...
The amount of mutual inductance between the two windings, together with the Q factor of the circuit, determine the shape of the frequency response curve. The advantage of the double tuned transformer is that it can have a wider bandwidth than a simple tuned circuit.
Many useful motor relationships between time, current, voltage, speed, power factor, and torque can be obtained from analysis of the Steinmetz equivalent circuit (also termed T-equivalent circuit or IEEE recommended equivalent circuit), a mathematical model used to describe how an induction motor's electrical input is transformed into useful ...
As an example, consider the use of a 10 hp, 1760 r/min, 440 V, three-phase induction motor (a.k.a. induction electrical machine in an asynchronous generator regime) as asynchronous generator. The full-load current of the motor is 10 A and the full-load power factor is 0.8. Required capacitance per phase if capacitors are connected in delta:
First, electromagnetic transients of three-phase induction motor are analyzed. Initial attempt is made to derive `equivalent circuits valid for both steady state and transient states in induction motor. The key point of FAM control is that the exciting current is kept constant in magnitude and continuous in the equivalent circuit.
In 1888, Nikola Tesla received a patent on a two-phase induction motor with a short-circuited copper rotor winding and a two-phase stator winding. Developments of this design became commercially important. In 1889, Mikhail Dolivo-Dobrovolsky developed a wound-rotor induction motor, and shortly afterwards a cage-type rotor winding. By the end of ...
Transformers are said to have "additive" or "subtractive" polarity based on their physical arrangement of terminals and the polarity of windings connected to the terminals. The convention used for North American transformers is that, facing the high voltage side of the transformer, the H1 terminal is on the observer's right.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...