Search results
Results From The WOW.Com Content Network
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.
The flattening transformation is an algorithm that transforms nested data parallelism into flat data parallelism. It was pioneered by Guy Blelloch as part of the NESL programming language. [ 1 ] The flattening transformation is also sometimes called vectorization , but is completely unrelated to automatic vectorization .
deskUNPDF: PDF converter to convert PDFs to Word (.doc, docx), Excel (.xls), (.csv), (.txt), more; GSview: File:Convert menu item converts any sequence of PDF pages to a sequence of images in many formats from bit to tiffpack with resolutions from 72 to 204 × 98 (open source software) Google Chrome: convert HTML to PDF using Print > Save as PDF.
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Anaconda is an open source [9] [10] data science and artificial intelligence distribution platform for Python and R programming languages.Developed by Anaconda, Inc., [11] an American company [1] founded in 2012, [11] the platform is used to develop and manage data science and AI projects. [9]
In multilinear algebra, mode-m flattening [1] [2] [3], also known as matrixizing, matricizing, or unfolding, [4] is an operation that reshapes a multi-way array into a matrix denoted by [] (a two-way array). Matrixizing may be regarded as a generalization of the mathematical concept of vectorizing.
Data for these collections can be imported from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. [8] A Series is a 1-dimensional data structure built on top of NumPy's array. [9]: 97 Unlike in NumPy, each data point has an associated label. The collection of these labels is ...