Search results
Results From The WOW.Com Content Network
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [ 1 ] [ 2 ] [ 3 ] This concept first arose in calculus , and was later generalized to the more abstract setting of order theory .
In particular, a function is called non-monotone if it has the property that adding more elements to a set can decrease the value of the function. More formally, the function f {\displaystyle f} is non-monotone if there are sets S , T {\displaystyle S,T} in its domain s.t. S ⊂ T {\displaystyle S\subset T} and f ( S ) > f ( T ) {\displaystyle ...
A non-monotonic logic is a formal logic whose entailment relation is not monotonic.In other words, non-monotonic logics are devised to capture and represent defeasible inferences, i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. [1]
Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere-differentiable. The Weierstrass function was one of the first fractals studied, although this term was not used until much later. The ...
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...
It can be proved that a real function is of bounded variation in [,] if and only if it can be written as the difference = of two non-decreasing functions and on [,]: this result is known as the Jordan decomposition of a function and it is related to the Jordan decomposition of a measure.
As explained in Riesz & Sz.-Nagy (1990), every non-decreasing non-negative function F can be decomposed uniquely as a sum of a jump function f and a continuous monotone function g: the jump function f is constructed by using the jump data of the original monotone function F and it is easy to check that g = F − f is continuous and monotone. [10]