Search results
Results From The WOW.Com Content Network
As a result, disjoint-set forests are both asymptotically optimal and practically efficient. Disjoint-set data structures play a key role in Kruskal's algorithm for finding the minimum spanning tree of a graph. The importance of minimum spanning trees means that disjoint-set data structures support a wide variety of algorithms.
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.
Once sorted, it is possible to loop through the edges in sorted order in constant time per edge. Next, use a disjoint-set data structure, with a set of vertices for each component, to keep track of which vertices are in which components. Creating this structure, with a separate set for each vertex, takes V operations and O(V) time. The final ...
A graph with three components. In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets.
Edge disjoint shortest pair algorithm is an algorithm in computer network routing. [1] The algorithm is used for generating the shortest pair of edge disjoint paths between a given pair of vertices. For an undirected graph G(V, E), it is stated as follows: Run the shortest path algorithm for the given pair of vertices
Union-find essentially stores labels which correspond to the same blob in a disjoint-set data structure, making it easy to remember the equivalence of two labels by the use of an interface method E.g.: findSet(l). findSet(l) returns the minimum label value that is equivalent to the function argument 'l'.
Consider a graph G = (V, E), where V denotes the set of n vertices and E the set of edges. For a (k,v) balanced partition problem, the objective is to partition G into k components of at most size v · (n/k), while minimizing the capacity of the edges between separate components. [1]
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...