When.com Web Search

  1. Ad

    related to: translation rotation reflection and dilation worksheet solutions manual

Search results

  1. Results From The WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    This is a glide reflection, except in the special case that the translation is perpendicular to the line of reflection, in which case the combination is itself just a reflection in a parallel line. The identity isometry, defined by I ( p ) = p for all points p is a special case of a translation, and also a special case of a rotation.

  4. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it ...

  5. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...

  6. Conformal linear transformation - Wikipedia

    en.wikipedia.org/wiki/Conformal_linear...

    Therefore, every conformal linear transformation can be expressed as the composition of up to n reflections and a dilation. Because every reflection across a hyperplane reverses the orientation of a pseudo-Euclidean space, the composition of any even number of reflections and a dilation by a positive real number is a proper conformal linear ...

  7. Conjugation of isometries in Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Conjugation_of_isometries...

    the conjugation of a translation by a rotation is a translation by a rotated translation vector; the conjugation of a translation by a reflection is a translation by a reflected translation vector; Thus the conjugacy class within the Euclidean group E(n) of a translation is the set of all translations by the same distance.

  8. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The translations by a given distance in any direction form a conjugacy class; the translation group is the union of those for all distances. In 1D, all reflections are in the same class. In 2D, rotations by the same angle in either direction are in the same class. Glide reflections with translation by the same distance are in the same class. In 3D:

  9. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.