When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    In the second step, they were divided by 3. The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis). Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Examples include ⁠ 1 / 2 ⁠, − ⁠ 8 / 5 ⁠, ⁠ −8 / 5 ⁠, and ⁠ 8 / −5 ⁠. The term was originally used to distinguish this type of fraction from the sexagesimal fraction used in astronomy. [10] Common fractions can be positive or negative, and they can be proper or improper (see below).

  5. Polynomial decomposition - Wikipedia

    en.wikipedia.org/wiki/Polynomial_decomposition

    the roots of this irreducible polynomial can be calculated as [5] 1 ± 2 1 / 6 , 1 ± − 1 ± 3 i 2 1 / 3 . {\displaystyle 1\pm 2^{1/6},1\pm {\frac {\sqrt {-1\pm {\sqrt {3}}i}}{2^{1/3}}}.} Even in the case of quartic polynomials , where there is an explicit formula for the roots, solving using the decomposition often gives a simpler form.

  6. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...

  7. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Application of the second rule to the region of 3 points generates 1/3 Simpson's rule, 4 points - 3/8 rule. These rules are very much similar to the alternative extended Simpson's rule. The coefficients within the major part of the region being integrated are one with non-unit coefficients only at the edges.

  8. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ⁄ 5: 0.4 Vulgar Fraction Two Fifths 2156 8534 ⅗ 35: 0.6 Vulgar Fraction Three Fifths 2157 8535 ⅘ 4 ⁄ 5: 0.8 Vulgar Fraction Four Fifths 2158 8536 ⅙ 1 ⁄ 6: 0.166... Vulgar Fraction One Sixth 2159 8537 ⅚ 56: 0.833... Vulgar Fraction Five Sixths 215A 8538 ⅛ 1 ⁄ 8: 0 ...

  9. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In it, uniform blocks are stacked on top of each other to achieve the maximum sideways or lateral distance covered. The blocks are stacked 1/2, 1/4, 1/6, 1/8, 1/10, … distance sideways below the original block. This ensures that the center of gravity is just at the center of the structure so that it does not collapse.