Search results
Results From The WOW.Com Content Network
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
Queues provide services in computer science, transport, and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer. Another usage of queues is in the implementation of breadth-first search.
By contrast, a breadth-first search will never reach the grandchildren, as it seeks to exhaust the children first. A more sophisticated analysis of running time can be given via infinite ordinal numbers ; for example, the breadth-first search of the depth 2 tree above will take ω ·2 steps: ω for the first level, and then another ω for the ...
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
The Lee algorithm is one possible solution for maze routing problems based on breadth-first search. It always gives an optimal solution, if one exists, but is slow and requires considerable memory. It always gives an optimal solution, if one exists, but is slow and requires considerable memory.
The typical data structure in serial BFS and some parallel BFS is FIFO Queue, as it is simple and fast where insertion and delete operation costs only constant time. Another alternative is the bag-structure. [ 4 ]
In computer science, the Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing the maximum flow in a flow network in (| | | |) time. The algorithm was first published by Yefim Dinitz in 1970, [1] [2] and independently published by Jack Edmonds and Richard Karp in 1972. [3]
Initialize a queue to hold a partial solution with none of the variables of the problem assigned. Loop until the queue is empty: Take a node N off the queue. If N represents a single candidate solution x and f(x) < B, then x is the best solution so far. Record it and set B ← f(x). Else, branch on N to produce new nodes N i. For each of these: