Search results
Results From The WOW.Com Content Network
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
The micrometre (SI symbol: μm) is a unit of length in the metric system equal to 10 −6 metres ( 1 / 1 000 000 m = 0. 000 001 m). To help compare different orders of magnitude , this section lists some items with lengths between 10 −6 and 10 −5 m (between 1 and 10 micrometers , or μm).
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
Informal setting with pancakes in a California mountain cabin. At an informal setting, fewer utensils are used and serving dishes are placed on the table. Sometimes the cup and saucer are placed on the right side of the spoon, about 30 cm or 12 inches from the edge of the table. Often, in less formal settings, the napkin should be in the wine ...
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
In the metric system, there are only a small number of basic measures of relevance to cooking: the gram (g) for weight, the liter (L) for volume, the meter (m) for length, and degrees Celsius (°C) for temperature; multiples and sub-multiples are indicated by prefixes, two commonly used metric cooking prefixes are milli-(m-) and kilo-(k-). [17]
In fractions like "2 nanometers per meter" (2 n m / m = 2 nano = 2×10 −9 = 2 ppb = 2 × 0.000 000 001), so the quotients are pure-number coefficients with positive values less than or equal to 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure ...
A 50 m × 25 m (164 ft × 82 ft) Olympic swimming pool, built to the FR3 minimum depth of 2 metres (6.6 ft) would hold 2,500 m 3 (660,000 US gal). The US National Institute of Standards and Technology (NIST) defines the Olympic swimming pool as 1 million litres, which is the approximate volume of the smaller FR2 pool. [48]