Search results
Results From The WOW.Com Content Network
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
The following table lists many specialized symbols commonly used in modern mathematics, ... radical symbol (for square root) 1637 (with the vinculum above the radicand)
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.
Plain text, programming languages, and calculators also use a single asterisk to represent the multiplication symbol, [6] and it must be explicitly used; for example, 3x is written as 3 * x. Rather than using the ambiguous division sign (÷), [ a ] division is usually represented with a vinculum , a horizontal line, as in 3 / x + 1 .
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
square root: 1 to 10: 1 to √10: 1 to 3.162: increase: for numbers with odd number of digits R2, W2 or Sq2: √x: square root: 10 to 100: √10 to 10: 3.162 to 10: increase: for numbers with even number of digits S: arcsin(x) sine: 0.1 to 1: arcsin(0.1) to arcsin(1.0) 5.74° to 90° increase and decrease (red) also with reverse angles in red ...