Search results
Results From The WOW.Com Content Network
An example of cluster sampling is area sampling or geographical cluster sampling.Each cluster is a geographical area in an area sampling frame.Because a geographically dispersed population can be expensive to survey, greater economy than simple random sampling can be achieved by grouping several respondents within a local area into a cluster.
In statistics, multistage sampling is the taking of samples in stages using smaller and smaller sampling units at each stage. [1] Multistage sampling can be a complex form of cluster sampling because it is a type of sampling which involves dividing the population into groups (or clusters). Then, one or more clusters are chosen at random and ...
Panel sampling is the method of first selecting a group of participants through a random sampling method and then asking that group for (potentially the same) information several times over a period of time. Therefore, each participant is interviewed at two or more time points; each period of data collection is called a "wave".
A cluster-randomised controlled trial is a type of randomised controlled trial in which groups of subjects (as opposed to individual subjects) are randomised. [1] Cluster randomised controlled trials are also known as cluster-randomised trials , [ 2 ] group-randomised trials , [ 3 ] [ 4 ] and place-randomized trials . [ 5 ]
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
[4]: 250 So, for example, if we have 3 clusters with 10, 20 and 30 units each, then the chance of selecting the first cluster will be 1/6, the second would be 1/3, and the third cluster will be 1/2. The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with ...
Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. [1] [2] [3] The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. [4]
Analogous to how Huber-White standard errors are consistent in the presence of heteroscedasticity and Newey–West standard errors are consistent in the presence of accurately-modeled autocorrelation, clustered standard errors are consistent in the presence of cluster-based sampling or treatment assignment.