When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laurent series - Wikipedia

    en.wikipedia.org/wiki/Laurent_series

    e −1/x 2 and its Laurent approximations (labeled) with the negative degree rising. The neighborhood around the zero singularity can never be approximated. e −1/x 2 and its Laurent approximations. As the negative degree of the Laurent series rises, it approaches the correct function.

  3. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    Suppose a punctured disk D = {z : 0 < |z − c| < R} in the complex plane is given and f is a holomorphic function defined (at least) on D. The residue Res(f, c) of f at c is the coefficient a −1 of (z − c) −1 in the Laurent series expansion of f around c. Various methods exist for calculating this value, and the choice of which method to ...

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point , a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index values):

  5. Essential singularity - Wikipedia

    en.wikipedia.org/wiki/Essential_singularity

    Plot of the function exp(1/z), centered on the essential singularity at z = 0.The hue represents the complex argument, the luminance represents the absolute value.This plot shows how approaching the essential singularity from different directions yields different behaviors (as opposed to a pole, which, approached from any direction, would be uniformly white).

  6. Isolated singularity - Wikipedia

    en.wikipedia.org/wiki/Isolated_singularity

    In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z 0 is an isolated singularity of a function f if there exists an open disk D centered at z 0 such that f is holomorphic on D \ {z 0}, that is, on the set obtained from D by taking z 0 out.

  7. Partial fractions in complex analysis - Wikipedia

    en.wikipedia.org/wiki/Partial_fractions_in...

    The partial fraction expansion for a function can also be used to find a Laurent series for it by simply replacing the rational functions in the sum with their Laurent series, which are often not difficult to write in closed form. This can also lead to interesting identities if a Laurent series is already known. Recall that

  8. Function of several complex variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several...

    As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables z i. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations.

  9. Painlevé transcendents - Wikipedia

    en.wikipedia.org/wiki/Painlevé_transcendents

    The point 1 for type VI, and; Possibly some movable poles; For type I, the singularities are (movable) double poles of residue 0, and the solutions all have an infinite number of such poles in the complex plane. The functions with a double pole at have the Laurent series expansion