Search results
Results From The WOW.Com Content Network
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex-valued. For example, a wave function might assign a complex ...
Below, a number of drum membrane vibration modes and the respective wave functions of the hydrogen atom are shown. A correspondence can be considered where the wave functions of a vibrating drum head are for a two-coordinate system ψ(r, θ) and the wave functions for a vibrating sphere are three-coordinate ψ(r, θ, φ).
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().
In representing the wave function of a localized particle, the wave packet is often taken to have a Gaussian shape and is called a Gaussian wave packet. [25] [26] [27] Gaussian wave packets also are used to analyze water waves. [28] For example, a Gaussian wavefunction ψ might take the form: [29]
The wave function changes, according to this school of thought, because new information is available. The post-measurement wave function generally cannot be known prior to the measurement, but the probabilities for the different possibilities can be calculated using the Born rule.
The concept of universal wavefunction was introduced by Hugh Everett in his 1956 PhD thesis draft The Theory of the Universal Wave Function. [8] It later received investigation from James Hartle and Stephen Hawking [ 9 ] who derived the Hartle–Hawking solution to the Wheeler–DeWitt equation to explain the initial conditions of the Big Bang ...
The interference involves different types of mathematical functions: A classical wave is a real function representing the displacement from an equilibrium position; an optical or quantum wavefunction is a complex function. A classical wave at any point can be positive or negative; the quantum probability function is non-negative.
The integral of the Dirac delta function. Sawtooth wave; Square wave; Triangle wave; Rectangular function; Floor function: Largest integer less than or equal to a given number. Ceiling function: Smallest integer larger than or equal to a given number. Sign function: Returns only the sign of a number, as +1, −1 or 0.