Search results
Results From The WOW.Com Content Network
It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it were a continuous distribution. The Kent distribution on the two-dimensional sphere.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
Pages in category "Discrete distributions" The following 51 pages are in this category, out of 51 total. ... Maximum entropy probability distribution; Mixed Poisson ...
Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is ...
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution [1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
Probability distribution#Discrete probability distribution To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .
The probability generating function of a binomial random variable, the number of successes in trials, with probability of success in each trial, is () = [() +]. Note : it is the n {\displaystyle n} -fold product of the probability generating function of a Bernoulli random variable with parameter p {\displaystyle p} .