When.com Web Search

  1. Ads

    related to: recurring decimal questions and answers grade 7

Search results

  1. Results From The WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...

  4. 142857 - Wikipedia

    en.wikipedia.org/wiki/142857

    142857 × 7 4 = 342999657 342 + 999657 = 999999. If you square the last three digits and subtract the square of the first three digits, you also get back a cyclic permutation of the number. [citation needed] 857 2 = 734449 142 2 = 20164 734449 − 20164 = 714285. It is the repeating part in the decimal expansion of the rational number ⁠ 1 / 7 ...

  5. The repeating decimal commonly written as 0.999... represents exactly the same quantity as the number one. Despite having the appearance of representing a smaller number, 0.999... is a symbol for the number 1 in exactly the same way that 0.333... is an equivalent notation for the number represented by the fraction 1 ⁄ 3. [438]

  6. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits: 1 ⁄ 3 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a ...

  7. Vinculum (symbol) - Wikipedia

    en.wikipedia.org/wiki/Vinculum_(symbol)

    A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...

  8. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...

  9. Reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.