Search results
Results From The WOW.Com Content Network
In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into ...
The equation for universal gravitation thus takes the form: F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},} where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses , and G is the gravitational constant .
According to this equation, the second force F 2 (r) is obtained by scaling the first force and changing its argument, as well as by adding inverse-square and inverse-cube central forces. For comparison, Newton's theorem of revolving orbits corresponds to the case a = 1 and b = 0 , so that r 1 = r 2 .
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field.
Next Newton proves his "Theorema II" which shows that if Kepler's second law results, then the force involved must be along the line between the two bodies. In other words, Newton proves what today might be called the "inverse Kepler problem": the orbit characteristics require the force to depend on the inverse square of the distance. [3]: 107
for the definition of the principal values of the inverse hyperbolic tangent and cotangent. In these formulas, the argument of the logarithm is real if and only if z is real. For artanh, this argument is in the real interval (−∞, 0], if z belongs either to (−∞, −1] or to [1, ∞).
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
The equation of motion for the radius of a particle of mass moving in a central potential is given by motion equations m d 2 r d t 2 − m r ω 2 = m d 2 r d t 2 − L 2 m r 3 = − d V d r , {\displaystyle m{\frac {d^{2}r}{dt^{2}}}-mr\omega ^{2}=m{\frac {d^{2}r}{dt^{2}}}-{\frac {L^{2}}{mr^{3}}}=-{\frac {dV}{dr}},}