Search results
Results From The WOW.Com Content Network
The third formula shown is the result of solving for a in the quadratic equation a 2 − 2ab cos γ + b 2 − c 2 = 0. This equation can have 2, 1, or 0 positive solutions corresponding to the number of possible triangles given the data.
For example, the formula is true for all real numbers a, and is therefore a law. Laws over an equality are called identities . [ 3 ] For example, ( a + b ) 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} and cos 2 θ + sin 2 θ = 1 {\displaystyle \cos ^{2}\theta +\sin ^{2}\theta =1} are identities. [ 4 ]
Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
Simple attempts to combine the x 2 and the bx rectangles into a larger square result in a missing corner. The term (b/2) 2 added to each side of the above equation is precisely the area of the missing corner, whence derives the terminology "completing the square". [8]
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
This formula is a special case of the multinomial formula for m = 3. The coefficients can be defined with a generalization of Pascal's triangle to three dimensions, called Pascal's pyramid or Pascal's tetrahedron. [2]