Search results
Results From The WOW.Com Content Network
In mathematics, a ternary operation is an n-ary operation with n = 3. A ternary operation on a set A takes any given three elements of A and combines them to form a single element of A . In computer science , a ternary operator is an operator that takes three arguments as input and returns one output.
In the simplest case, shown in the first picture, we are given a finite set of points {, …} in the Euclidean plane.In this case, each point has a corresponding cell consisting of the points in the Euclidean plane for which is the nearest site: the distance to is less than or equal to the minimum distance to any other site .
A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall [1] to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation T {\displaystyle T} is defined by T ( a , b , c ) = a b + c ...
Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.
If this property holds in the affine plane defined by a ternary ring, then there is an equivalence relation between "vectors" defined by pairs of points from the plane. [14] Furthermore, the vectors form an abelian group under addition; the ternary ring is linear and satisfies right distributivity: (+) = +.
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [4] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations.
Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).