Search results
Results From The WOW.Com Content Network
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]
A margin classifier is a classification model that utilizes the margin of each example to learn such classification. There are theoretical justifications (based on the VC dimension ) as to why maximizing the margin (under some suitable constraints) may be beneficial for machine learning and statistical inference algorithms.
The margin for an iterative boosting algorithm given a dataset with two classes can be defined as follows: the classifier is given a sample pair (,), where is a domain space and = {, +} is the sample's label.
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.
Unlike CPUs, which only process a single piece of data at a time, GPUs can process a wider range of integers and floating point numbers simultaneously through vector processing.
A top-level capsule has a long vector if and only if its associated entity is present. To allow for multiple entities, a separate margin loss is computed for each capsule. Downweighting the loss for absent entities stops the learning from shrinking activity vector lengths for all entities. The total loss is the sum of the losses of all entities ...
In particular, support vector machines find a hyperplane that separates the feature space into two classes with the maximum margin. If the problem is not originally linearly separable, the kernel trick can be used to turn it into a linearly separable one, by increasing the number of dimensions. Thus a general hypersurface in a small dimension ...