When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...

  3. Neural tangent kernel - Wikipedia

    en.wikipedia.org/wiki/Neural_tangent_kernel

    The NTK is a specific kernel derived from a given neural network; in general, when the neural network parameters change during training, the NTK evolves as well. However, in the limit of large layer width the NTK becomes constant, revealing a duality between training the wide neural network and kernel methods: gradient descent in the infinite ...

  4. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    In the kernel method the data is represented in a kernel matrix (or, Gram matrix). Many algorithms can solve machine learning problems using the kernel matrix. The main problem of kernel method is its high computational cost associated with kernel matrices. The cost is at least quadratic in the number of training data points, but most kernel ...

  5. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    Learning algorithms based on this framework exhibit good generalization ability and finite sample convergence, while often being simpler and more effective than information theoretic methods; Thus, learning via the kernel embedding of distributions offers a principled drop-in replacement for information theoretic approaches and is a framework ...

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  7. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    Deep learning and artificial neural networks are approaches used in machine learning to build computational models which learn from training examples. Bayesian neural networks merge these fields. They are a type of neural network whose parameters and predictions are both probabilistic.

  8. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    In typical machine learning algorithms, these functions produce a scalar output. Recent development of kernel methods for functions with vector-valued output is due, at least in part, to interest in simultaneously solving related problems. Kernels which capture the relationship between the problems allow them to borrow strength from each other.

  9. Category:Kernel methods for machine learning - Wikipedia

    en.wikipedia.org/wiki/Category:Kernel_methods...

    Pages in category "Kernel methods for machine learning" The following 18 pages are in this category, out of 18 total. This list may not reflect recent changes .