Search results
Results From The WOW.Com Content Network
London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds[1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are ...
Dispersion stabilized molecules are molecules where the London dispersion force (LDF), a non-covalent attractive force between atoms and molecules, plays a significant role in promoting the molecule's stability. Distinct from steric hindrance, dispersion stabilization has only recently been considered in depth by organic and inorganic chemists ...
The dispersion (London) force is the most important component because all materials are polarizable, whereas Keesom and Debye forces require permanent dipoles. The London interaction is universal and is present in atom-atom interactions as well. For various reasons, London interactions (dispersion) have been considered relevant for interactions ...
In molecular physics and chemistry, the van der Waals force (sometimes van de Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; [2] they are comparatively weak and therefore more susceptible to disturbance.
The gaseous phase of the dry ice in image (b) is visible because the molecular solid is subliming. A molecular solid is a solid consisting of discrete molecules. The cohesive forces that bind the molecules together are van der Waals forces, dipole–dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, halogen ...
In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, [1] but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The chemical energy released in the formation of non-covalent interactions is typically on the order ...
Keesom forces are the forces between the permanent dipoles of two polar molecules. [23]: 701 London dispersion forces are the forces between induced dipoles of different molecules. [23]: 703 There can also be an interaction between a permanent dipole in one molecule and an induced dipole in another molecule. [23]: 702
Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German born physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are today considered classic and are discussed in standard textbooks of physical chemistry.