Search results
Results From The WOW.Com Content Network
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
In many occasions in physics, associated Legendre polynomials in terms of angles occur where spherical symmetry is involved. The colatitude angle in spherical coordinates is the angle used above. The longitude angle, , appears in a multiplying factor. Together, they make a set of functions called spherical harmonics.
In mathematics, Legendre's equation is the Diophantine equation + + = The equation is named for Adrien-Marie Legendre who proved in 1785 that it is solvable in integers x, y, z, not all zero, if and only if −bc, −ca and −ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free, pairwise relatively prime integers, not all positive or all negative.
Legendre polynomials occur in the solution of Laplace's equation of the static potential, ∇ 2 Φ(x) = 0, in a charge-free region of space, using the method of separation of variables, where the boundary conditions have axial symmetry (no dependence on an azimuthal angle).
Legendre's formula. In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre. It is also sometimes known as de Polignac's formula, after Alphonse de Polignac.
Gauss–Legendre quadrature. In numerical analysis, Gauss–Legendre quadrature is a form of Gaussian quadrature for approximating the definite integral of a function. For integrating over the interval [−1, 1], the rule takes the form: where. xi are the roots of the n th Legendre polynomial. This choice of quadrature weights wi and quadrature ...
Legendre's relation. In mathematics, Legendre's relation can be expressed in either of two forms: as a relation between complete elliptic integrals, or as a relation between periods and quasiperiods of elliptic functions. The two forms are equivalent as the periods and quasiperiods can be expressed in terms of complete elliptic integrals.
Associated Legendre polynomials are the colatitudinal part of the spherical harmonics which are common to all separations of Laplace's equation in spherical polar coordinates. [2] The radial part of the solution varies from one potential to another, but the harmonics are always the same and are a consequence of spherical symmetry.