When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  3. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Addersubtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  4. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    Full adder. A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full-adder adds three one-bit numbers, often written as , , and ; and are the operands, and is a bit carried in from the previous less-significant stage. 3 The circuit produces a two-bit output. Output carry and sum are typically ...

  5. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder[1][2][nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together. A carry save adder is typically used in a binary ...

  6. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    A carry-lookahead adder (CLA) or fast adder is a type of electronics adder used in digital logic. A carry-lookahead adder improves speed by reducing the amount of time required to determine carry bits. It can be contrasted with the simpler, but usually slower, ripple-carry adder (RCA), for which the carry bit is calculated alongside the sum bit ...

  7. Brent–Kung adder - Wikipedia

    en.wikipedia.org/wiki/Brent–Kung_adder

    The Brent–Kung adder is a parallel prefix adder (PPA) form of carry-lookahead adder (CLA). Proposed by Richard Peirce Brent and Hsiang Te Kung in 1982 it introduced higher regularity to the adder structure and has less wiring congestion leading to better performance and less necessary chip area to implement compared to the Kogge–Stone adder (KSA).

  8. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    Multiply each bit of one of the arguments, by each bit of the other. Reduce the number of partial products to two by layers of full and half adders. Group the wires in two numbers, and add them with a conventional adder. [3] Compared to naively adding partial products with regular adders, the benefit of the Wallace tree is its faster speed.

  9. Subtractor - Wikipedia

    en.wikipedia.org/wiki/Subtractor

    In electronics, a subtractor – a digital circuit that performs subtraction of numbers – can be designed using the same approach as that of an adder. The binary subtraction process is summarized below. As with an adder, in the general case of calculations on multi-bit numbers, three bits are involved in performing the subtraction for each ...