When.com Web Search

  1. Ad

    related to: hamiltonian path generator online free ai download

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

  4. Random geometric graph - Wikipedia

    en.wikipedia.org/wiki/Random_geometric_graph

    In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space (according to a specified probability distribution) and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.

  5. Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász_conjecture

    Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...

  6. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    A Hamiltonian cycle on a tesseract with vertices labelled with a 4-bit cyclic Gray code Every hypercube Q n with n > 1 has a Hamiltonian cycle , a cycle that visits each vertex exactly once. Additionally, a Hamiltonian path exists between two vertices u and v if and only if they have different colors in a 2 -coloring of the graph.

  7. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    Thus, each two consecutive permutations in the sequence generated by the Steinhaus–Johnson–Trotter algorithm correspond in this way to two vertices that form the endpoints of an edge in the permutohedron, and the whole sequence of permutations describes a Hamiltonian path in the permutohedron, a path that passes through each vertex exactly ...

  8. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Further information available online at Richard Kaye's Minesweeper pages. Kashiwabara, T.; Fujisawa, T. (1979). "NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph". Proceedings. International Symposium on Circuits and Systems. pp. 657– 660.

  9. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.