Search results
Results From The WOW.Com Content Network
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
The positive integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.
Moreover, the hypothesis on F′ ensures that X k + 1 is at most half the size of X k when m is the midpoint of Y, so this sequence converges towards [x*, x*], where x* is the root of f in X. If F ′ ( X ) strictly contains 0, the use of extended interval division produces a union of two intervals for N ( X ) ; multiple roots are therefore ...
In other words, multiply the remainder by 100 and add the two digits. This will be the current value c. Find p, y and x, as follows: Let p be the part of the root found so far, ignoring any decimal point. (For the first step, p = 0.) Determine the greatest digit x such that (+). We will use a new variable y = x(20p + x).
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator , by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation ).
When multiplied by itself, the result is itself; All of its rows and columns are linearly independent. The principal square root of an identity matrix is itself, and this is its only positive-definite square root. However, every identity matrix with at least two rows and columns has an infinitude of symmetric square roots. [9]