When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Attention mechanism with attention weights, overview. As hand-crafting weights defeats the purpose of machine learning, the model must compute the attention weights on its own. Taking analogy from the language of database queries, we make the model construct a triple of vectors: key, query, and value. The rough idea is that we have a "database ...

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The purpose of each encoder layer is to create contextualized representations of the tokens, where each representation corresponds to a token that "mixes" information from other input tokens via self-attention mechanism. Each decoder layer contains two attention sublayers: (1) cross-attention for incorporating the output of encoder ...

  4. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    The graph attention network (GAT) was introduced by Petar Veličković et al. in 2018. [11] Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data.

  5. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Multi-head attention enhances this process by introducing multiple parallel attention heads. Each attention head learns different linear projections of the Q, K, and V matrices. This allows the model to capture different aspects of the relationships between words in the sequence simultaneously, rather than focusing on a single aspect.

  6. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. The largest and most capable LLMs are generative pretrained transformers (GPTs).

  7. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    As an illustration, we describe a single down-scaling layer in the backbone: The latent array and the time-embedding are processed by a ResBlock: The latent array is processed by a convolutional layer. The time-embedding vector is processed by a one-layered feedforward network, then added to the previous array (broadcast over all pixels).

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    An Elman network is a three-layer network (arranged horizontally as x, y, and z in the illustration) with the addition of a set of context units (u in the illustration). The middle (hidden) layer is connected to these context units fixed with a weight of one. [51] At each time step, the input is fed forward and a learning rule is applied. The ...

  9. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms.