When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic coil - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_coil

    Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF in the conductor. A current through any conductor creates a circular magnetic field around the conductor due to Ampere's law. [3]

  3. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    where H 0 is the applied magnetic field due only to the free currents and H d is the demagnetizing field due only to the bound currents. The magnetic H-field, therefore, re-factors the bound current in terms of "magnetic charges". The H field lines loop only around "free current" and, unlike the magnetic B field, begins and ends near magnetic ...

  4. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    But when the small coil is moved in or out of the large coil (B), the magnetic flux through the large coil changes, inducing a current which is detected by the galvanometer (G). [ 1 ] Faraday's law of induction (or simply Faraday's law ) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to ...

  5. Proximity effect (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Proximity_effect...

    It also assumes the magnetic field is perpendicular to the axis of the wire, which is the case in most designs. Find values of the B field due to each winding individually. This can be done using a simple magnetostatic FEA model where each winding is represented as a region of constant current density, ignoring individual turns and litz strands.

  6. Inductance - Wikipedia

    en.wikipedia.org/wiki/Inductance

    The magnetic field strength depends on the magnitude of the electric current, and therefore follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) in the conductors, a process known as electromagnetic induction. This induced ...

  7. Helmholtz coil - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_coil

    The magnetic field frequency range can be anywhere from near DC (0 Hz) to many kilohertz or even megahertz (MHz). An AC Helmholtz coil driver is needed to generate the required time-varying magnetic field. The waveform amplifier driver must be able to output high AC current to produce the magnetic field.

  8. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.

  9. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    The magnetic field lines of a current-carrying loop of wire pass through the center of the loop, concentrating the field there. Magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field).