Search results
Results From The WOW.Com Content Network
A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs. [1]
[Divide function] Find the maximum and minimum values in the bucket. If the maximum value is equal to the minimum value, the sorting is completed and the division is stopped. Set up a two-dimensional array as all the empty buckets. Divide into the bucket according to the interpolation number.
Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values. Functions that have more than one result may be implemented with lookup tables that are arrays of ...
A section of code that performs such initialization is generally known as "initialization code" and may include other, one-time-only, functions such as opening files; in object-oriented programming, initialization code may be part of a constructor (class method) or an initializer (instance method).
While the terms allude to the rows and columns of a two-dimensional array, i.e. a matrix, the orders can be generalized to arrays of any dimension by noting that the terms row-major and column-major are equivalent to lexicographic and colexicographic orders, respectively. It is also worth noting that matrices, being commonly represented as ...
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
make the two-dimensional array one-dimensional by computing a single index from the two; consider a one-dimensional array where each element is another one-dimensional array, i.e. an array of arrays; use additional storage to hold the array of addresses of each row of the original array, and store the rows of the original array as separate one ...