Search results
Results From The WOW.Com Content Network
Generation of primes. In computational number theory, a variety of algorithms make it possible to generate prime numbers efficiently. These are used in various applications, for example hashing, public-key cryptography, and search of prime factors in large numbers. For relatively small numbers, it is possible to just apply trial division to ...
The tables contain the prime factorization of the natural numbers from 1 to 1000. When n is a prime number, the prime factorization is just n itself, written in bold below. The number 1 is called a unit. It has no prime factors and is neither prime nor composite.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. [1] [2] It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical (non-quantum ...
Formula for primes. In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.
A prime number p = 2 q + 1 is called a safe prime if q is prime. Thus, p = 2 q + 1 is a safe prime if and only if q is a Sophie Germain prime, so finding safe primes and finding Sophie Germain primes are equivalent in computational difficulty. The notion of a safe prime can be strengthened to a strong prime, for which both p − 1 and p + 1 ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set "s" of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit packing of the wheel; although not specifically mentioned in the referenced paper, this ...