When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. [1] The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane. The function to be integrated may be a ...

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem implies that line integrals through gradient fields are path-independent. In physics this theorem is one of the ways of defining a conservative force. By placing φ as potential, ∇φ is a conservative field. Work done by conservative forces does not depend on the path followed by the object, but only the end points, as ...

  4. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The definition of surface integral relies on splitting the surface into small surface elements. A surface integral generalizes double integrals to integration over a surface (which may be a curved set in space); it can be thought of as the double integral analog of the line integral.

  5. Differential form - Wikipedia

    en.wikipedia.org/wiki/Differential_form

    A differential 1-form is integrated along an oriented curve as a line integral. The expressions dx i ∧ dx j, where i < j can be used as a basis at every point on the manifold for all 2-forms. This may be thought of as an infinitesimal oriented square parallel to the x i – x j-plane.

  6. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    Conservative vector field. In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral.

  7. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.

  8. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    The elements of differential and integral calculus extend naturally to vector fields. When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus.

  9. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. [1][2][3] Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are ...