Search results
Results From The WOW.Com Content Network
Macsyma (/ ˈ m æ k s ɪ m ə /; "Project MAC's SYmbolic MAnipulator") [1] is one of the oldest general-purpose computer algebra systems still in wide use. It was originally developed from 1968 to 1982 at MIT's Project MAC. In 1982, Macsyma was licensed to Symbolics and became a commercial product. In 1992, Symbolics Macsyma was spun off to ...
The development of MOOSE at Idaho National Laboratory (INL) since May 2008, has resulted in a unique approach to computational engineering that combines computer science with a strong underlying mathematical description in a unique way that allows scientists and engineers to develop engineering simulation tools in a fraction of the time previously required. [2]
In robotics, a manipulator is a device used to manipulate materials without direct physical contact by the operator. The applications were originally for dealing with radioactive or biohazardous materials, using robotic arms , or they were used in inaccessible places.
FORM is a symbolic manipulation system. It reads text files containing definitions of mathematical expressions as well as statements that tell it how to manipulate these expressions. Its original author is Jos Vermaseren of Nikhef, the Dutch institute for subatomic physics. It is widely used in the theoretical particle physics community, but it ...
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
A manipulator can move an object with up to 6 degrees of freedom (DoF), determined by 3 translation 3T and 3 rotation 3R coordinates for full 3T3R mobility. However, when a manipulation task requires less than 6 DoF, the use of lower mobility manipulators, with fewer than 6 DoF, may bring advantages in terms of simpler architecture, easier control, faster motion and lower cost. [2]
Each line of motion controlling G-code consists of two parts: the type of motion from the last cutter location to the next cutter location (e.g. "G01" means linear, "G02" means circular), and the next cutter location itself (the cartesian point (20, 1.3, 4.409) in this example).
The cam can be seen as a device that converts rotational motion to reciprocating (or sometimes oscillating) motion. [clarification needed] [3] A common example is the camshaft of an automobile, which takes the rotary motion of the engine and converts it into the reciprocating motion necessary to operate the intake and exhaust valves of the cylinders.