When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Earth's energy budget (in W/m 2) determines the climate. It is the balance of incoming and outgoing radiation and can be measured by satellites. The Earth's energy imbalance is the "net absorbed" energy amount and grew from +0.6 W/m 2 (2009 est. [8]) to above +1.0 W/m 2 in 2019. [23

  3. Solar activity and climate - Wikipedia

    en.wikipedia.org/wiki/Solar_activity_and_climate

    [28] [42] Lockwood and Fröhlich, 2007, found "considerable evidence for solar influence on the Earth's pre-industrial climate and the Sun may well have been a factor in post-industrial climate change in the first half of the last century", but that "over the past 20 years, all the trends in the Sun that could have had an influence on the Earth ...

  4. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    Instrument inaccuracies add a significant uncertainty in determining Earth's energy balance. The energy imbalance has been variously measured (during a deep solar minimum of 2005–2010) to be +0.58 ± 0.15 W/m 2, [32] +0.60 ± 0.17 W/m 2 [33] and +0.85 W/m 2. Estimates from space-based measurements range +3–7 W/m 2.

  5. Solar constant - Wikipedia

    en.wikipedia.org/wiki/Solar_constant

    The angular diameter of the Earth as seen from the Sun is approximately 1/11,700 radians (about 18 arcseconds), meaning the solid angle of the Earth as seen from the Sun is approximately 1/175,000,000 of a steradian. Thus the Sun emits about 2.2 billion times the amount of radiation that is caught by Earth, in other words about 3.846×10 26 watts.

  6. Clouds and the Earth's Radiant Energy System - Wikipedia

    en.wikipedia.org/wiki/Clouds_and_the_Earth's...

    Each CERES instrument is a radiometer which has three channels – a shortwave (SW) channel to measure reflected sunlight in 0.2–5 μm region, a channel to measure Earth-emitted thermal radiation in the 8–12 μm "window" or "WN" region, and a Total channel to measure entire spectrum of outgoing Earth's radiation (>0.2 μm).

  7. Outgoing longwave radiation - Wikipedia

    en.wikipedia.org/wiki/Outgoing_longwave_radiation

    The growth in Earth's energy imbalance from satellite and in situ measurements (2005–2019). A rate of +1.0 W/m 2 summed over the planet's surface equates to a continuous heat uptake of about 500 terawatts (~0.3% of the incident solar radiation). [7] [8] Outgoing longwave radiation (OLR) constitutes a critical component of Earth's energy ...

  8. Solar energy - Wikipedia

    en.wikipedia.org/wiki/Solar_energy

    In 2011, a report by the International Energy Agency found that solar energy technologies such as photovoltaics, solar hot water, and concentrated solar power could provide a third of the world's energy by 2060 if politicians commit to limiting climate change and transitioning to renewable energy. The energy from the Sun could play a key role ...

  9. Solar radius - Wikipedia

    en.wikipedia.org/wiki/Solar_radius

    Evolution of the solar luminosity, radius and effective temperature compared to the present-day Sun. After Ribas (2009) [3] The uncrewed SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of 696,342 ± 65 kilometres (432,687 ± 40 ...