When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule is used in the Ricci calculus in various calculations involving the Christoffel symbols of the first and second kind. [14] In particular, Cramer's rule can be used to prove that the divergence operator on a Riemannian manifold is invariant with respect to change of coordinates. We give a direct proof, suppressing the role of the ...

  3. Rule of Sarrus - Wikipedia

    en.wikipedia.org/wiki/Rule_of_Sarrus

    Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...

  4. Unimodular matrix - Wikipedia

    en.wikipedia.org/wiki/Unimodular_matrix

    In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers : there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule ).

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and determinants can be used to solve these equations (Cramer's rule), although other methods of solution are computationally much more

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Determinants can be used to solve linear systems using Cramer's rule, where the division of the determinants of two related square matrices equates to the value of each of the system's variables. [38]

  7. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  8. Matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Matrix_analysis

    In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...

  9. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    Input: initial guess x (0) to the solution, (diagonal dominant) matrix A, right-hand side vector b, convergence criterion Output: solution when convergence is reached Comments: pseudocode based on the element-based formula above k = 0 while convergence not reached do for i := 1 step until n do σ = 0 for j := 1 step until n do if j ≠ i then ...