Search results
Results From The WOW.Com Content Network
A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion in the third direction, which can then be ignored for most problems.
Dotted line is the bare band. The kink at −0.2 eV is due to graphene's phonons. [16] The one-electron spectral function that is directly measured in ARPES maps the probability that the state of the system of N electrons from which one electron has been instantly removed is any of the ground states of the (N − 1)-particle system:
Typical examples include graphene, topological insulators, bismuth antimony thin films and some other novel nanomaterials, [1] [4] [5] in which the electronic energy and momentum have a linear dispersion relation such that the electronic band structure near the Fermi level takes the shape of an upper conical surface for the electrons and a ...
Graphene doped with various gaseous species (both acceptors and donors) can be returned to an undoped state by gentle heating in vacuum. [22] [24] Even for dopant concentrations in excess of 10 12 cm −2 carrier mobility exhibits no observable change. [24] Graphene doped with potassium in ultra-high vacuum at low temperature can reduce ...
The onset temperature of reaction between the basal plane of single-layer graphene and oxygen gas is below 260 °C (530 K). [2] Graphene combusts at 350 °C (620 K). [ 3 ] Graphene is commonly modified with oxygen- and nitrogen-containing functional groups and analyzed by infrared spectroscopy and X-ray photoelectron spectroscopy .
Epitaxial graphene growth on silicon carbide (SiC) by thermal decomposition is a method to produce large-scale few-layer graphene (FLG). Graphene is one of the most promising nanomaterials for the future because of its various characteristics, like strong stiffness and high electric and thermal conductivity .
Graphene is so thin that water has near-perfect wetting transparency which is an important property particularly in developing bio-sensor applications. [17] This means that a sensor coated in graphene has as much contact with an aqueous system as an uncoated sensor, while remaining protected mechanically from its environment.
Bilayer graphene is a material consisting of two layers of graphene. One of the first reports of bilayer graphene was in the seminal 2004 Science paper by Geim and colleagues, [ 1 ] in which they described devices "which contained just one, two, or three atomic layers"