Search results
Results From The WOW.Com Content Network
The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...
The equations of translational kinematics can easily be extended to planar rotational kinematics for constant angular acceleration with simple variable exchanges: = + = + = (+) = + (). Here θ i and θ f are, respectively, the initial and final angular positions, ω i and ω f are, respectively, the initial and final angular velocities, and α ...
The Morison equation contains two empirical hydrodynamic coefficients—an inertia coefficient and a drag coefficient—which are determined from experimental data. As shown by dimensional analysis and in experiments by Sarpkaya, these coefficients depend in general on the Keulegan–Carpenter number , Reynolds number and surface roughness .
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
The contact between the inner and outer cylindrical surfaces is usually assumed to be frictionless. But some use simplified models assume linear viscous damping in the form T = B ω {\displaystyle T=B\,\omega } , where T is the friction torque , ω is the relative angular velocity , and B is the friction constant.
The MacCormack method is well suited for nonlinear equations (Inviscid Burgers equation, Euler equations, etc.) The order of differencing can be reversed for the time step (i.e., forward/backward followed by backward/forward). For nonlinear equations, this procedure provides the best results.
The original problem was solved by Stokes in 1845, [9] but Geoffrey Ingram Taylor's name was attached to the flow because he studied its stability in a famous 1923 paper. [10] The problem can be solved in cylindrical coordinates (,,).
Washburn's equation is also used commonly to determine the contact angle of a liquid to a powder using a force tensiometer. [ 5 ] In the case of porous materials, many issues have been raised both about the physical meaning of the calculated pore radius r {\displaystyle r} [ 6 ] and the real possibility to use this equation for the calculation ...