Search results
Results From The WOW.Com Content Network
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
Plot of the Jacobi polynomial function (,) with = and = and = in the complex plane from to + with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) (,) are a class of classical orthogonal polynomials.
The expansion coefficients are the analogs of Fourier coefficients, and can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle Ω, and utilizing the above orthogonality relationships. This is justified rigorously by basic Hilbert space theory.
The function s n,k is equal to 1 at the midpoint x n,k of the interval I n,k, linear on both halves of that interval. It takes values between 0 and 1 everywhere. The Faber–Schauder system is a Schauder basis for the space C([0, 1]) of continuous functions on [0, 1]. [6] For every f in C([0, 1]), the partial sum
Rewriting the ratios of factorials in the radial part as products of binomials shows that the coefficients are integer numbers: = = () ().A notation as terminating Gaussian hypergeometric functions is useful to reveal recurrences, to demonstrate that they are special cases of Jacobi polynomials, to write down the differential equations, etc.:
Orthogonal polynomials with matrices have either coefficients that are matrices or the indeterminate is a matrix. There are two popular examples: either the coefficients { a i } {\displaystyle \{a_{i}\}} are matrices or x {\displaystyle x} :
Plot of the Chebyshev rational functions of order n=0,1,2,3 and 4 between x=0.01 and 100. Legendre and Chebyshev polynomials provide orthogonal families for the interval [−1, 1] while occasionally orthogonal families are required on [0, ∞). In this case it is convenient to apply the Cayley transform first, to bring the argument into [−1, 1].
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...