When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Trend line (technical analysis) - Wikipedia

    en.wikipedia.org/wiki/Trend_line_(technical...

    For example, below is a chart of the S&P 500 since the earliest data point until April 2008. While the Oracle example above uses a linear scale of price changes, long term data is more often viewed as logarithmic: e.g. the changes are really an attempt to approximate percentage changes than pure numerical value.

  3. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    96% confidence bands around a local polynomial fit to botanical data. A confidence band is used in statistical analysis to represent the uncertainty in an estimate of a curve or function based on limited or noisy data. Similarly, a prediction band is used to represent the uncertainty about the value of a new data-point on the curve, but subject ...

  4. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  5. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    A drawback of polynomial bases is that the basis functions are "non-local", meaning that the fitted value of y at a given value x = x 0 depends strongly on data values with x far from x 0. [9] In modern statistics, polynomial basis-functions are used along with new basis functions , such as splines , radial basis functions , and wavelets .

  6. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators ^ and ^ vary from sample to sample for the specified sample size.

  7. Decomposition of time series - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_time_series

    For example, time series are usually decomposed into: , the trend component at time t, which reflects the long-term progression of the series (secular variation). A trend exists when there is a persistent increasing or decreasing direction in the data. The trend component does not have to be linear. [1]

  8. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).

  9. Cochran–Armitage test for trend - Wikipedia

    en.wikipedia.org/wiki/Cochran–Armitage_test_for...

    For example, if k = 3 and we suspect that B = 1 and B = 2 have similar frequencies (within each row), but that B = 3 has a different frequency, then the weights t = (1,1,0) should be used. If we suspect a linear trend in the frequencies, then the weights t = (0,1,2) should be used.