When.com Web Search

  1. Ads

    related to: calculus chain rule examples with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    All extensions of calculus have a chain rule. In most of these, the formula remains the same, though the meaning of that formula may be vastly different. One generalization is to manifolds. In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This ...

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  4. Ximera - Wikipedia

    en.wikipedia.org/wiki/Ximera

    The course begins with an introduction to functions and limits, and goes on to explain derivatives.By the end of this course, the student will have learnt the fundamental theorem of calculus, chain rule, derivatives of transcendental functions, integration, and applications of all these in the real world.

  5. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A⋅(B×C) = (A×B)⋅C we may derive A⋅(∇×C) = (A×∇)⋅C but not ∇⋅(B×C) = (∇×B)⋅C, nor from A⋅(B ...

  7. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions f {\displaystyle f} and g {\displaystyle g} , the total derivative of the composite function f ∘ g {\displaystyle f\circ g} at a {\displaystyle a} satisfies

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    Composable differentiable functions f : R n → R m and g : R m → R k satisfy the chain rule, namely () = (()) for x in R n. The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix , which in a sense is the " second derivative " of the function in question.

  9. List of calculus topics - Wikipedia

    en.wikipedia.org/wiki/List_of_calculus_topics

    Sum rule in integration; Constant factor rule in integration; Linearity of integration; Arbitrary constant of integration; Cavalieri's quadrature formula; Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the integral sign ...