Search results
Results From The WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
An "interferogram" from a Fourier-transform spectrometer. This is the "raw data" which can be Fourier-transformed into an actual spectrum. The peak at the center is the ZPD position ("zero path difference"): Here, all the light passes through the interferometer because its two arms have equal length.
The spectra are plotted in units of log inverse reflectance (log 1/R) versus wavenumber. Alternative plots of Kubelka-Munk units can be used, which relate reflectance to concentration using a scaling factor. A reflectance standard is needed in order to quantify the reflectance of the sample because it cannot be determined directly. [2] [3]
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
There are two main approaches to two-dimensional spectroscopy, the Fourier-transform method, in which the data is collected in the time-domain and then Fourier-transformed to obtain a frequency-frequency 2D correlation spectrum, and the frequency domain approach in which all the data is collected directly in the frequency domain.
An interferogram from an FTIR measurement. The horizontal axis is the position of the mirror, and the vertical axis is the amount of light detected. This is the "raw data" which can be Fourier transformed to get the actual spectrum. Fourier transform infrared (FTIR) spectroscopy is a
Software for mass spectrometry imaging developed by the Swiss Institute of Bioinformatics. [67] MSiReader Freeware: Vendor-neutral interface built on the Matlab platform designed to view and perform data analysis of mass spectrometry imaging (MSI) data. [68] Matlab is not required to use MSiReader. MS Interpreter Freeware
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.