Ads
related to: minima and maxima calculus problems
Search results
Results From The WOW.Com Content Network
Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...
Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.
The problem of finding the local maxima and minima subject to constraints can be generalized to finding local maxima and minima on a differentiable manifold . [14] In what follows, it is not necessary that be a Euclidean space, or even a Riemannian manifold.
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.
In English, the full title can be translated as "A new method for maxima and minima, and for tangents, that is not hindered by fractional or irrational quantities, and a singular kind of calculus for the above mentioned." [2] It is from this title that this branch of mathematics takes the name calculus.
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Global optimization is a branch of operations research, applied mathematics, and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set.