Search results
Results From The WOW.Com Content Network
The force between quarks is known as the colour force [6] (or color force [7]) or strong interaction, and is responsible for the nuclear force. Since the theory of electric charge is dubbed " electrodynamics ", the Greek word χρῶμα ( chrōma , "color") is applied to the theory of color charge, "chromodynamics".
Deoxyribonucleic acid (/ d iː ˈ ɒ k s ɪ ˌ r aɪ b oʊ nj uː ˌ k l iː ɪ k,-ˌ k l eɪ-/ ⓘ; [1] DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many ...
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.
According to quantum chromodynamics (QCD), quarks possess a property called color charge. There are three types of color charge, arbitrarily labeled blue, green, and red. [nb 6] Each of them is complemented by an anticolor – antiblue, antigreen, and antired. Every quark carries a color, while every antiquark carries an anticolor. [76]
B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove makes it more accessible to proteins. On the other hand, it has a narrow minor groove. B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove appears to favor B-DNA.
Besides the quark confinement idea, there is a potential possibility that the color charge of quarks gets fully screened by the gluonic color surrounding the quark. Exact solutions of SU(3) classical Yang–Mills theory which provide full screening (by gluon fields) of the color charge of a quark have been found. [13]
By placing the molecules in wells in the gel and applying an electric field, the molecules will move through the matrix at different rates, determined largely by their mass when the charge-to-mass ratio (Z) of all species is uniform. However, when charges are not all uniform the electrical field generated by the electrophoresis procedure will ...
The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...