When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1. A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons.

  3. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  4. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  5. Artificial neuron - Wikipedia

    en.wikipedia.org/wiki/Artificial_neuron

    Non-monotonic, unbounded, and oscillating activation functions with multiple zeros that outperform sigmoidal and ReLU-like activation functions on many tasks have also been recently explored. The threshold function has inspired building logic gates referred to as threshold logic; applicable to building logic circuits resembling brain processing.

  6. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  7. Gudermannian function - Wikipedia

    en.wikipedia.org/wiki/Gudermannian_function

    The Gudermannian function is a sigmoid function, and as such is sometimes used as an activation function in machine learning. The (scaled and shifted) Gudermannian function is the cumulative distribution function of the hyperbolic secant distribution. A function based on the Gudermannian provides a good model for the shape of spiral galaxy arms ...

  8. Swish function - Wikipedia

    en.wikipedia.org/wiki/Swish_function

    The swish paper was then updated to propose the activation with the learnable parameter β. In 2017, after performing analysis on ImageNet data, researchers from Google indicated that using this function as an activation function in artificial neural networks improves the performance, compared to ReLU and sigmoid functions. [1]

  9. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.