When.com Web Search

  1. Ad

    related to: tangent line and curve examples geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the ...

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...

  4. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two " infinitesimally adjacent" curves, meaning the limit of intersections of ...

  5. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles ...

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the ...

  7. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

  8. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Consider the one-dimensional curve shown in Fig. 3. At point P, taken as an origin, x is one of the Cartesian coordinates, and q 1 is one of the curvilinear coordinates. The local (non-unit) basis vector is b 1 (notated h 1 above, with b reserved for unit vectors) and it is built on the q 1 axis which is a tangent to that coordinate line at the ...

  9. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    The needs of geometry, and also for example classical mechanics are to have a notion of curve in space of any number of dimensions. In general relativity, a world line is a curve in spacetime. If is a differentiable manifold, then we can define the notion of differentiable curve in . This general idea is enough to cover many of the applications ...